
Design Problem 3 – Blade Shaft Bearings and Gear Design 

 

Gearbox Kinematics, Layout, and Components (2 points) 

 Assumptions and Requirements: 

• Spur gears (requirement 5 in design problem 3 prompt) for both driven and driving 

function. 

• No energy loss across the shaft and gears since torque transmitted remains the same 

throughout the design. 

1. State the diameter of the blade shaft that you have assumed for your design. 

It can be observed from McMaster-Carr that for two gears with identical 

specifications, metric appears to be the least expensive option. Therefore, the shaft's 

diameter for this design is assumed to be 12 mm (0.47"), meeting the criteria of 

exceeding 3/8”. 

2. Design the gear train kinematics, stating your final gear reduction ratio (input divided by 

output) as well as the number of teeth on each gear. 

The motor generates power within a 3000-3500 RPM speed range, as specified in the 

design prompt. Calculations below show that a 1.314 gear ratio aligns with the 

maximum 3500 RPM, and a 1.5333 ratio aligns with the minimum 3000 RPM: 

 
𝜔2

𝜔1
=

4600 𝑅𝑃𝑀

3500 𝑅𝑃𝑀
= 1.314 

  
𝜔2

𝜔1
=

4600 𝑅𝑃𝑀

3000 𝑅𝑃𝑀
= 1.53̅ 

…where 4600 RPM is the output angular velocity to be delivered by the blade to the 

workpiece. 

McMaster-Carr’s smallest gear has 12 teeth. To meet the gear ratio range, 16 and 18 

teeth gears are ideal due to their lower cost. However, no suitable pitch diameters 

were found for these combinations.  

Figure 1 indicates the distance from the motor's centerline to the support box edge 

must be 1.5" (38.1 mm). This requires the driving gear's pitch diameter to be over 3" 

(76.2 mm), significantly limiting the range of suitable gear ratios for the design.  

From this, a chosen gear ratio of 1. 3̅ was selected to be final gear ratio for the design, 

with 𝑁1 = 40 teeth for the motor gear and 𝑁2 = 30 teeth for the shaft gear: 

  
𝑁1 = 40

𝑁2 = 30
= 1. 3̅ 

 



3. State the pitch/module and the resulting nominal center distance between the gears. 

𝑚 = 2 for the module of both the motor and shaft gears. 

The given equations help determine the pitch diameter (𝑑𝑝), which is essential for 

calculating the nominal center distance between gears, as their pitch circles need to be 

tangent at a specific point: 

 𝑚 =
𝑑𝑝

𝑁
→ 2 =

𝑑𝑝

40
→ 𝑑𝑝1 = 80 𝑚𝑚 for the motor gear. 

𝑚 =
𝑑𝑝

𝑁
→ 2 =

𝑑𝑝

30
→ 𝑑𝑝2 = 60 𝑚𝑚 for the shaft gear. 

The nominal center distance is calculated as 𝑟𝑝1 + 𝑟𝑝2, the summation of the pitch 

radius of both meshing gears. Therefore: 

 𝑟𝑝1
+ 𝑟𝑝2 →

𝑑𝑝1

2
+

𝑑𝑝2

2
→

80 𝑚𝑚

2
+

60 𝑚𝑚

2
= 40 𝑚𝑚 + 30 𝑚𝑚 = 70 mm 

4. Provide the McMaster-Carr part numbers and costs for the two gears. 

Motor Gear: 2664N25 - $54.71 

Shaft Gear: 2664N24 - $38.69 

5. State the outer diameter for the ball bearings you have selected and the outer diameter 

you are using for the front and back plates of the support box. 

The outer diameter (OD) 𝑑𝑏 of the selected ball bearings is 28 mm. 

To calculate the OD of the support box's front and back plates 𝑑𝑆, it's necessary to 

establish the clearance distance between the support box's edge and the bearing's 

outer diameter, which should be at least 10 mm. The procedure for determining this 

distance is outlined as follows: 

𝑟𝑝1 + 𝑟𝑝2 = 𝑟𝑠 + 𝑤𝑏 + 𝑐 + 38.1, where 𝑟𝑠 is the shaft radius, 𝑤𝑏 the width of the 

bearing, 𝑐 clearance.  

  Solving for 𝑐 yields the following equation: 

   𝑐 = (𝑟𝑝1 + 𝑟𝑝2) − 38.1 − 𝑤𝑏 − 𝑟𝑠 

   𝑐 = (70) − 38.1 − 8 − 6 

  𝑐 = 17.9 mm ≥ 10 (according to the design requirement) 

The front and back plate diameters 𝑑𝑆 can be calculated as follows: 

 𝑑𝑆 = 2𝑐 + 𝑑𝑏 → 𝑑𝑠 = 2(17.9) + 28 

 𝑑𝑆 = 63.8 mm 

 



6. Provide the McMaster-Carr part numbers and costs for the bearings. 

6001 series, 2RS bearing: 5972K82 - $8.73 

Bearing Design Calculations (3 points) 

1. Determine the required static load rating for each of the blade shaft bearings. 

According to McMaster-Carr, the basic static, radial load capacity 𝐶0 for a 6001-2RS 

bearing is 530 lbf (2,357 N). 

The provided free-body diagram (FBD) below will be used to assess if the reaction 

forces on the bearing justify choosing stronger ones. 

• *Note: The bearings are modelled as simple supports to simplify the analysis 

of the shaft’s behavior, since they provide uniform support without significant 

rotational motion due to proper seating within the housing.  

• Note: Forces are assumed to act at the center of mass of the bearing. 

 

Figure 2 – FBD of the forces acting on the shaft, causing reaction forces on the 

bearings. 

𝑧-Direction Forces (∑𝐹𝑧 = 0): 

𝑊𝑔 = 0.072 𝑁 – Weight of the gear acting negative downward on the shaft. 

𝑊𝑟 = 18.78 𝑁 – Radial force acting positive upward on the shaft gear. 

𝐹𝐵𝑧 = 39.85 𝑁 – Blade force acting positive upward. 

𝑅𝑧1 & 𝑅𝑧2 – Reaction forces assumed to act positive upward. 

𝐹𝐴 – Axial misalignment force introducing a moment about the front bearing. 

 

∑𝐹𝑧 = 0 → 𝑅𝑧1 + 𝑅𝑧2 + 𝐹𝐵𝑧 + 𝑊𝑟 − 𝑊𝑔 = 0 

 



      𝑥-direction Moments (∑𝑀𝑥 = 0): 

  ∑𝑀𝑥 = 0 → (𝑅𝑧2 ∗ 92) + (𝐹𝐵𝑧)(92 + 4 + 15) + (𝐹𝐴)(101.6) 

+(𝑊𝑔)(4 + 3 + (15 − 6.1666)) − (𝑊𝑟)(4 + 3 + 10) = 0 

where: 

• 92 mm – Distance between the center of both bearings. 

• 4 mm – Distance from the center of a bearing to its edge. 

• 15 mm – Distance from the edge of a bearing to the center of the end of the 

blade (see Figure 1). 

• 101.6 mm – Radius of the blade found from the given diameter of 8 inches. 

• 3 mm – Provided width of the spacer (see Figure 1). 

• (15 − 6.1666) mm – Location of the force which 𝑊𝑔 acts based on the 

material properties found from the SolidWorks file.  

     Similarly, for the 𝑥-direction Forces (∑𝐹𝑥 = 0): 

 ∑𝐹𝑥 = 0 → 𝑅𝑥1 + 𝑅𝑥2 + 𝐹𝐵𝑥 + 𝑊𝑡 = 0 

     Similarly, for the 𝑧-direction Moments (∑𝑀𝑧 = 0): 

 ∑𝑀𝑧 = 0 → −(𝑅𝑥2)(92) − (51.6)(4 + 3 + 10) + (15.62)(92 + 15) = 0 

  

Therefore, from the above equations, the constant static load experienced by the bearings 

during operation is as follows: 

 𝑅⃗ 𝐹 = −58.6Î + 10Ĵ − 2.11K̂ N 

 𝑅𝐹 = 59.48 N 

 𝑅𝐵 = −8.63Î + 10Ĵ − 55.8K̂ N 

  𝑅𝐵 = 57.34 N 

 

The front bearing experiences a resultant force of 59.48 N, which falls significantly 

below the static load rating of 2,357 N. The calculated factor of safety is as follows: 

 

 𝑛 =
𝑎𝑐𝑡𝑢𝑎𝑙

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
=

2357 𝑁

59.48 𝑁
= 39.62 

  

 which greatly exceeds the required factor of safety of 𝑛 = 1.2, passing the static load test. 



2. Determine the required basic dynamic load rating for the blade shaft bearings. Justify 

your design with complete calculations. No credit will be given without sufficient 

supporting calculations.  

 

The desired life of a bearing 𝐿𝐷 can be found from equation 11-2b from Shigley, 

where we need the bearing to spin at 4600 RPM for 20,000 Hrs: 

 

 𝐿𝐷 = 60 ∗ 𝐿 ∗ 𝑛 = 60 ∗ 20000 ∗ 4600 = 5.52e9 

Equation 11-3 from Shigley is as follows, where 𝐶10 = 1100 lbf (4893 N) sourced 

from McMaster-Carr: 

• 𝑎 = 3 for ball bearings. 

• 𝐿𝑅 = 106 as standard life for bearing. 

 𝐶10 = 𝐹𝑅 = 𝐹𝐷 (
𝐿𝐷

𝐿𝑅
)
1/𝑎

→ 4893 = 𝐹𝐷 (
5.52e9

106 )
1/3

→ 𝐹𝐷 = 276.8 N 

These bearings can support 276.8 N radially for the specified revolutions for 20,000 

hours. 

The equivalent radial load for ball bearings can be found in figure 2, where it should 

be noted that  
𝐹𝑎

𝐶0
< 0.014 is taken as 0.014 according to the table footnote. 

Additionally, the rotation factor 𝑉 = 1 due to the rotation of the inner ring of the 

bearing. Equation 11-12 coincides with figure 2 to compute the equivalent radial load. 

However, to use Equation 11-12 requires first determining whether 𝑒 exceeds 

𝐹𝑎/(𝑉𝐹𝑟), equation 11-11a: 

 

 

 

 
𝐹𝑎

𝑉𝐹𝑟
≤ 𝑒 → 0.036 ≤ 0.19  

Because equation 11-11a is satisfied, we use 𝑖 = 1.   

 𝐹𝑒 = 𝑋𝑖𝑉𝐹𝑟 + 𝑌𝑖𝐹𝑎 → (1)(1)(276.8) + (0)(10) = 𝐹𝑟 = 276.8 N 

Here, we can see the radial load is equal to the equivalent radial load due to negligible 

axial loads acting on the bearing.  



Now we can compute the 𝑛 = 1.2 factor of safety to determine whether the bearing is 

suitable for radial loads: 

𝐶10 = 𝑛 ∗ 𝐹𝐷 (
𝐿𝐷

𝐿𝑅
)

1

𝑎
  

𝐶10 = 230.71 N < 4893 N, which passes the dynamic load rating test by our 

specified safety factor. 

3. State the minimum thickness for the support box front plate (based only on the bearing 

and shoulder thickness), the hole size and tolerances for installing the bearing, and the 

dimensions (thickness, inner diameter, and tolerances) for the through-hole of the 

shoulder. Cite any sources. 

The support box, made of aluminum 6061 with a yield strength of 240 MPa, 

experiences only axial forces from the bearings, leading to shear stress. Thus, the 

effective yield strength is reduced to 120 MPa (𝑆𝑦/2). Additionally, we will assume a 

default factor of safety of 𝑛 = 2: 

  120 = 2 ∗
𝐹

2𝐴
 

  → 120 = 2 ∗
10

2∗𝜋∗𝑟∗ℎ
 

 → 120 = 2 ∗
10

2∗𝜋∗𝑟∗ℎ
 

ℎ = 0.0019 mm is the minimum shoulder thickness to prevent yielding from 

axial loading. 

The thickness of the shoulder is selected to be 1 mm. Therefore, the overall thickness 

of the plates is 9 mm. 

 

 

The bearing has an ABEC Rating of Grade 1, meaning it has looser tolerances. [2] 

The tolerance stated by McMaster-Carr for a 6001-2RS bearing is -0.009 mm to 0 

mm. The hole size for installing the bearing is recommended to be a loose fit for the 

outer ring, according to SKF [3]. A J7 Housing fit is recommended according to 

ntnamerica.org [4], based on the following figure:  



 

Where the static inner ring load condition applies. The same source also lists a table 

of the recommended tolerances and based on this grade:  

 

 

 

Where the nominal bore diameter of the selected bearing is 28 mm. This is in the 

provide 18-30 mm range in the above table, which suggests that the housing rating be 

9T ~ 21L, where T denotes “Tight”, L denotes “Loose”, and the provided numbers are 

in units of 𝜇m. Therefore, the hole size should be 28 mm with a tolerance of 9 𝜇m 

tight to 21 𝜇m loose. 

 

 



The dimensions for the through-hole of the shoulder can be found by citing 

resource.dynaroll.com, where they state the following: When a bearing is located 

against a shoulder in a mating part, care must be taken that the rim of the shoulder 

clears the opposing ring. This is achieved when the diameter of the shoulder has 

clearance over the opposing race land diameter.  

 

Maximum shaft shoulder diameter = Outer ring land diameter – Clearance* 

Minimum housing diameter = Inner ring land diameter + Clearance* 

*Clearance should be > 0.010 inch (0.25 mm) to allow for normal tolerances." [5] 

 

 

 

 

 



 
 

Figure 3 – Dimensions of 6001-2RS1 bearing 

 

The above figure from hightempbearings.com portrays the outer ring, inner diameter 

(land diameter) to be 25.5 mm. According to the maximum shaft shoulder diameter 

equation, with a clearance (tolerance) of 0.25 mm, the through hole shoulder is 

between 25.75 mm and 26 mm. Figure 4 provided below also supports these findings 

[6]. 



 

Figure 4 – Abutment dimensions 

Additionally, housing radius should be less than bearing radius, or 𝑟 > 𝑟𝑎, where our 

bearing radius 𝑟 = 0.3 mm. Therefore, we can justify a bearing radius for our housing 

𝑟𝑎 to be 𝑟𝑎 = 0.15 mm. [5] 

Gear Design Calculations (4 points) 

1. Determine the forces on the gear teeth (radial, tangential, and, if applicable, axial). 

The following equations can be computed by using the gear ratios and torques 

mentioned in section 1, describing the gear kinematics and torques. 

The tangential force acting on the gear teeth can be calculated as follows (Shigley 

equation 13-12b):  

 𝑊𝑡,𝑚𝑜𝑡𝑜𝑟 =
𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑝1

2

 

where the torque acting on the motor can be calculated as the following, since the 

blade and shaft gear spin on the same shaft, meaning they possess the same angular 

velocity and therefore the same torque: 

 𝑇𝑠ℎ𝑎𝑓𝑡 = 𝑇𝑏𝑙𝑎𝑑𝑒 = 1548 N*mm 

 𝑇𝑚𝑜𝑡𝑜𝑟 = −𝑇𝑠ℎ𝑎𝑓𝑡 ∗ 𝑔𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 = −1548 ∗ 1. 3̅ = −2063 N*mm 

Therefore,  

 𝑊𝑡,𝑚𝑜𝑡𝑜𝑟 =
2063 N∗mm

80

2
 mm

= 51.6 N 

The radial force on the gear teeth can be calculated as follows (Shigley equation 13-

40): 

  𝑊𝑟,𝑚𝑜𝑡𝑜𝑟 = 𝑊𝑡 tan𝜙, where 𝜙 = 20° pressure angle.  

  𝑊𝑟,𝑚𝑜𝑡𝑜𝑟 = 51.6 ∗ tan 20° = 18.7 N 



It should be noted that the tangential and radial forces act equally and opposite on 

both gears. Therefore, both gears should experience the same load.  

The pitch line velocity for the motor gear is calculated as follows, where 𝜔𝑚𝑜𝑡𝑜𝑟 =
481.7 𝑟𝑎𝑑/𝑠, dividing by 1000 yields the answer in m/s, necessary to calculate 𝐾𝑣:  

 𝑉1 = |

𝑑𝑝1

2
∗𝜔𝑚𝑜𝑡𝑜𝑟

1000
| = 14.45 m/s 

 

The dynamic stress concentration factor 𝐾𝑣 is given by the following for hobbed 

gears (Shigley 14-6c): 

 

 𝐾𝑣 =
3.56+√𝑉

3.56
= 2.068 

 

The strength of the selected steel gears in bending and contact are provided in the 

problem statement and are listed as follows: 

• 𝑆𝑡 = 210 MPa 

• 𝑆𝑐 = 760 MPa 

     The face width for both gears sourced from McMasterCarr are listed as being 20 mm. 

      𝐹 = 20 mm  

The respective Lewis Form Factors for both gears using table 14-2 in Shigley shows that 

the motor gear has a 𝑌 = 0.3892 and the shaft gear has a 𝑌 = 0.359. Because the shaft 

gear has a smaller 𝑌, it experiences more stress and must therefore be used as the gear for 

which all stress calculations are constrained. 

The metric Lewis Bending Stress equation (Shigley 14-8) can be used to obtain 

approximate bending stresses on the gear:  

 𝜎𝑏 =
𝐾𝑣𝑊

𝑡

𝐹𝑚𝑌
= 8.3 MPa  

  𝜎𝑏 ≪ 210 MPa, which suggests most stress is not from bending. 

 The Hertzian Stress (Surface Compressive Stress) can be found using equations 14-11 

and 14-12 from Shigley: 

   



  

Where 𝑟1 = 13.68 and 𝑟2 = 10.26, for the respective pitch diameters of the motor 

and shaft gear. 

And 𝐶𝑝 can be found using figure 3: 

 𝐶𝑝 = 191, since our gears are steel. 

The Hertzian Stress is therefore equal to: 

 𝜎𝐶 = 188 MPa 

Though this stress is significantly higher than the bending stress, it falls well below 

the 𝑆𝑐 = 760 MPa.  

 

To begin the AGMA Gear Stress Analysis, let’s first obtain the stress factors and 

constants needed for both bending and contact: 

• Note: All of the following figures from this point are taken from Shigley. 

  

 𝐾𝑜 = 1.25 – Reasoning: 

Uniform Power Source: If the motor provides a consistent and steady level 

of power without significant fluctuations, then it would be classified as a 

uniform power source. 

  

Moderate Shock Driven Machine: A chop saw blade undergoes moderate 

shock loads because it intermittently cuts through material. The resistance 

provided by the material being cut can cause sudden and moderate loads 

on the gear system, especially when encountering knots in wood or 

unexpected materials in the workpiece. 

  

   
 

  𝐾𝑠 = 1.4045 

   

 𝐾𝐻 (𝐾𝑚) = 𝐶𝑚𝑓 = 1 + 𝐶𝑚𝑐(𝐶𝑝𝑓𝐶𝑝𝑚 + 𝐶𝑚𝑎𝐶𝑒) = 1.2862: 



   

𝐶𝑚𝑐 = 1 – The provided schematics and diagrams of the gears listed on 

McMaster-Carr suggest that the gears are uncrowned.  

 

 
 

𝐶𝑝𝑓 = 0.0250 – Since 𝐹 ≤ 1 in (25.4 mm), the first equation is used. 

Since the value obtained was less than 0.05, 0.05 is used. 

 

 

𝐶𝑝𝑚 = 1.1 – We must assume the worst case, since the shaft gear follows 

a cantilever model, not a straddle-mounted one. 

    

 

𝐶𝑚𝑎 = 0.2587 - Since the design requires open gearing, the first-row 

values are used 

   

  𝐶𝑒 = 1 – We assume the gear is not adjusted at assembly and their    

material properties remain the same throughout operation and during 

installation.  



   

  𝑌𝑗 = 0.37 – The gear for which we are trying to determine 𝑌𝑗 (shaft gear) has 30  

teeth. The driving gear has 40 teeth. We follow the 35 teeth curve to obtain the 

0.37 value. 

 

𝐾𝐵 = 1 – The rim thickness is much less than the height of the tooth, so we 

assume that 𝑚𝐵 is equal to 1. 

 

 



 

We now possess the necessary factors to compute 𝜎𝑏 AGMA Bending Stress in the 

above figure: 

Using the above equation, 𝜎𝑏 = 16.4 MPa. 

To compute the factor of safety, recall that 𝐿 = 5.52e9. We now call this 𝑁. With 

this, we refer to the following figure: 

 

We note that equation 1.3558𝑁−0.0178 is used, since it was mentioned in 

lecture, per the AGMA standard, that the upper portion is for general 

applications. 

𝑌𝑁 = 0.9095  

 𝐾𝑇 = 1 – Section 14-15 states that for temperatures up to 250 degrees F, 

use 1.  

 

 Plugging in the above values reveals 𝑆𝐹 to be: 



𝑆𝐹 = 11.65, where the specified minimum safety factor for the gears 

is 2. It passes the requirement. 

 

To calculate the AGMA contact stress in the above equation, a few additional 

factors must be found:  

  

   𝑚𝐺 =
60

80
= 0.75 

   𝑚𝑁 = 1 – Shigley states on page 758 that this value is 1 for spur gears. 

   𝐶𝐻 = 1 – This value is 1 since both gears are the same hardness and  

manufactured from the same material. 

 

𝐼 = 0.0689 – Based on the above obtained values. 

Contact stress can now be computed as follows: 

 𝜎𝑐 = 327.26 MPa 

 

 

 

 

 

 

 

 

 

 



The factor of safety 𝑆𝐻 is obtained by calculating 𝑍𝑁 (above figure) and using 

pre-calculated values: 

  

𝑍 = 0.8649  

   

  Using the above equation: 

   𝑆𝐻 = 2.0072 

2. If we had a supplier that could provide any face width we wanted at no additional cost, 

what minimum face width would be necessary for the gears to meet the required factor of 

safety? Justify your design with complete calculations. No credit will be given without 

sufficient supporting calculations. Your selected gears must have at least this face width.  

Since the gears experience more stress in contact, we will adjust the iteration 

according to 𝑆𝐻, not 𝑆𝐹.  

Additionally, it should be noted that 𝐾𝑠 and 𝐾𝐻 are the only factors that scale with 

the face width 𝐹. While 𝐾𝑠 scales strictly according to some concrete value of 𝐹, 

care should be taken when proceeding with 𝐾𝐻, since the face width’s value 

depends on the equation to use when calculating 𝐶𝑝𝑓. However, we can safely 

assume that the face width will be no greater than 1 inch since our factor of safety 

is very roughly 2. Therefore, we can assume that the following equation is always 

used: 

 



 

Using our contact stress equation above, we can use MATLAB to iteratively solve 

for an 𝐹 that causes 𝑆𝐻 to assume the value of 2. 

The procedure to obtain the minimum face width with MATLAB is as follows: 

i. Pick a face width. 

ii. Calculate 𝑆𝐻 

iii. If 𝑆𝐻 > 2.0, decreases the face width. If 𝑆ℎ < 2.0, increase the face width. 

iv. Repeat until 𝑆𝐻 = 2.0 

 

A value of 19.9 mm is found to represent the minimum face width value for the 

design. 

3. If we wanted to try out a new supplier, what minimum Brinell hardness would you specify 

for these gears (and why)? 

The 𝑆𝑡 and 𝑆𝑐 for the steel gears are provided at 99.9% reliability. However, to 

proceed with the following calculations, they must be readjusted to reflect their 

99% reliability, where: 

  

Therefore, using the following equations, we can obtain more a standard 𝑆𝑡 and 

𝑆𝑐: 

  

 

 Therefore, 𝑆𝑡 = 262.5 MPa and 𝑆𝑐 = 950 MPa. 



Now, we must take these values and solve for an 𝐻𝐵 for both using the following 

figures: 

 

 

 

  We will use grade 1 steel since we don’t know and shall assume worst case. 

𝑆𝑡 = 0.533𝐻𝐵 + 88.3 → 262.5 = 0.533𝐻𝐵 + 88.3 → 𝐻𝐵 = 326 MPa 

𝑆𝑐 = 2.22𝐻𝐵 + 200 → 𝐻𝐵 = 337 MPa, selected since it’s larger than 326 MPa. 
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Figures 

 

Figure 1 – Geared Design Dimensions 

 

 



 

Figure 2 – Equivalent Radial Load Factors for Ball Bearings 

 



 

Figure 3 – Elastic Coefficient (𝐶𝑝) 


