Design Problem 3 — Blade Shaft Bearings and Gear Design

Gearbox Kinematics, Layout, and Components (2 points)

Assumptions and Requirements:

Spur gears (requirement 5 in design problem 3 prompt) for both driven and driving
function.

No energy loss across the shaft and gears since torque transmitted remains the same
throughout the design.

1. State the diameter of the blade shaft that you have assumed for your design.

It can be observed from McMaster-Carr that for two gears with identical
specifications, metric appears to be the least expensive option. Therefore, the shaft's
diameter for this design is assumed to be 12 mm (0.47"), meeting the criteria of
exceeding 3/8”.

2. Design the gear train kinematics, stating your final gear reduction ratio (input divided by
output) as well as the number of teeth on each gear.

The motor generates power within a 3000-3500 RPM speed range, as specified in the
design prompt. Calculations below show that a 1.314 gear ratio aligns with the
maximum 3500 RPM, and a 1.5333 ratio aligns with the minimum 3000 RPM:

w, _ 4600 RPM

= =1.314
w; 3500 RPM

w, _ 4600 RPM _
w; 3000 RPM

1.53

...where 4600 RPM is the output angular velocity to be delivered by the blade to the
workpiece.

McMaster-Carr’s smallest gear has 12 teeth. To meet the gear ratio range, 16 and 18
teeth gears are ideal due to their lower cost. However, no suitable pitch diameters
were found for these combinations.

Figure 1 indicates the distance from the motor's centerline to the support box edge
must be 1.5" (38.1 mm). This requires the driving gear's pitch diameter to be over 3"
(76.2 mm), significantly limiting the range of suitable gear ratios for the design.

From this, a chosen gear ratio of 1.3 was selected to be final gear ratio for the design,
with N; = 40 teeth for the motor gear and N, = 30 teeth for the shaft gear:

N; =40 5
——— =1.3
N2=30



3. State the pitch/module and the resulting nominal center distance between the gears.
m = 2 for the module of both the motor and shaft gears.

The given equations help determine the pitch diameter (d,,), which is essential for
calculating the nominal center distance between gears, as their pitch circles need to be
tangent at a specific point:

d d
m=-"-2=-F-d, = 80mm for the motor gear.

d d
m=-"-2=-F-d,, =60 mm for the shaft gear.
The nominal center distance is calculated as 7,5 + 73, the summation of the pitch
radius of both meshing gears. Therefore:

dyq dp2 80mm .= 60 mm
Ty, +1py > 42> +
p1 p 2 2 2 2

=40mm+ 30 mm = 70 mm

4. Provide the McMaster-Carr part numbers and costs for the two gears.
Motor Gear: 2664N25 - $54.71
Shaft Gear: 2664N24 - $38.69

5. State the outer diameter for the ball bearings you have selected and the outer diameter
you are using for the front and back plates of the support box.

The outer diameter (OD) d;, of the selected ball bearings is 28 mm.

To calculate the OD of the support box's front and back plates d, it's necessary to
establish the clearance distance between the support box's edge and the bearing's
outer diameter, which should be at least 10 mm. The procedure for determining this
distance is outlined as follows:

Tp1 + Tpy = 15 + wp + ¢ + 38.1, where 7 is the shaft radius, wy, the width of the
bearing, c clearance.

Solving for c yields the following equation:
c= (rpl + rpz) —381—wy —75
c=(70)—381-8-6
¢ = 17.9 mm = 10 (according to the design requirement)
The front and back plate diameters dg can be calculated as follows:
ds =2c+d, - dg =2(17.9) + 28
ds = 63.8 mm



6. Provide the McMaster-Carr part numbers and costs for the bearings.
6001 series, 2RS bearing: 5972K82 - $8.73

Bearing Design Calculations (3 points)
1. Determine the required static load rating for each of the blade shaft bearings.

According to McMaster-Carr, the basic static, radial load capacity C, for a 6001-2RS
bearing is 530 1bf (2,357 N).

The provided free-body diagram (FBD) below will be used to assess if the reaction
forces on the bearing justify choosing stronger ones.

e *Note: The bearings are modelled as simple supports to simplify the analysis
of the shaft’s behavior, since they provide uniform support without significant
rotational motion due to proper seating within the housing.

e Note: Forces are assumed to act at the center of mass of the bearing.
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Figure 2 — FBD of the forces acting on the shaft, causing reaction forces on the

bearings.
z-Direction Forces (3F, = 0):
Wy = 0.072 N — Weight of the gear acting negative downward on the shaft.
W, = 18.78 N — Radial force acting positive upward on the shaft gear.
Fg, = 39.85 N — Blade force acting positive upward.
R,; & R,, — Reaction forces assumed to act positive upward.

F, — Axial misalignment force introducing a moment about the front bearing.

2F,=0->Ry + Ry + Fp, + W, =Wy =0



x-direction Moments (}M, = 0):
YM, =0 - (R, *92) + (Fg;)(92 + 4 + 15) + (F4)(101.6)
+(W,)(4+3+ (15 - 6.1666)) — (W) (4 + 3+ 10) = 0
where:

e 92 mm — Distance between the center of both bearings.

¢ 4 mm — Distance from the center of a bearing to its edge.

e 15 mm — Distance from the edge of a bearing to the center of the end of the
blade (see Figure 1).

e 101.6 mm — Radius of the blade found from the given diameter of 8 inches.

e 3 mm — Provided width of the spacer (see Figure 1).

e (15— 6.1666) mm — Location of the force which W acts based on the
material properties found from the SolidWorks file.

Similarly, for the x-direction Forces (}.F, = 0):
YE,=0->Ry +Rp +Fg + W, =0

Similarly, for the z-direction Moments (}M, = 0):
YM, =0—- —(Ry;)(92) — (51.6)(4 + 3+ 10) + (15.62)(92+15) =0

Therefore, from the above equations, the constant static load experienced by the bearings
during operation is as follows:

Rp = —58.61 + 10] — 2.11K N
Rr = 59.48N
Rz = —8.631 + 10] — 55.8KN
Rp =57.34N

The front bearing experiences a resultant force of 59.48 N, which falls significantly
below the static load rating of 2,357 N. The calculated factor of safety is as follows:

actual _ 2357N
required T 5948N

= 39.62

which greatly exceeds the required factor of safety of n = 1.2, passing the static load test.



2. Determine the required basic dynamic load rating for the blade shaft bearings. Justify
your design with complete calculations. No credit will be given without sufficient
supporting calculations.

The desired life of a bearing L can be found from equation 11-2b from Shigley,
where we need the bearing to spin at 4600 RPM for 20,000 Hrs:

Lp =60*L*n=60x%20000 4600 = 5.52e9

Equation 11-3 from Shigley is as follows, where C;o = 1100 Ibf (4893 N) sourced
from McMaster-Carr:

e g = 3 for ball bearings.
e Ly = 10° as standard life for bearing.

1/a 1/3
Coo=Fr=Fp(2) —4893=F, (%) - F,=2768N
R
These bearings can support 276.8 N radially for the specified revolutions for 20,000

hours.

The equivalent radial load for ball bearings can be found in figure 2, where it should
be noted that 1;_(1 < 0.014 is taken as 0.014 according to the table footnote.

0
Additionally, the rotation factor V = 1 due to the rotation of the inner ring of the

bearing. Equation 11-12 coincides with figure 2 to compute the equivalent radial load.
However, to use Equation 11-12 requires first determining whether e exceeds
F,/(VE.), equation 11-11a:

a

=1 when <e (11-1a)

[ F{I F{I
=X+Y— when > e (11-11b)
VF, VF, VF,

fa -6 50036 <019
VE,

r

Because equation 11-11a is satisfied, we use i = 1.
F, =X;VE. +Y;F, - (1)(1)(276.8) + (0)(10) = F. = 276.8 N

Here, we can see the radial load is equal to the equivalent radial load due to negligible
axial loads acting on the bearing.



Now we can compute the n = 1.2 factor of safety to determine whether the bearing is
suitable for radial loads:

Cio =nx*Fp (i_i)i

Cio = 230.71 N < 4893 N, which passes the dynamic load rating test by our
specified safety factor.

3. State the minimum thickness for the support box front plate (based only on the bearing
and shoulder thickness), the hole size and tolerances for installing the bearing, and the
dimensions (thickness, inner diameter, and tolerances) for the through-hole of the
shoulder. Cite any sources.

The support box, made of aluminum 6061 with a yield strength of 240 MPa,
experiences only axial forces from the bearings, leading to shear stress. Thus, the
effective yield strength is reduced to 120 MPa (S,,/2). Additionally, we will assume a

default factor of safety of n = 2:

120 = 2+ -
2A
5120 = 2 % —2
2+TT*1r*h
5120 = 2 % —2
2+TT*1r*h

h = 0.0019 mm is the minimum shoulder thickness to prevent yielding from
axial loading.

The thickness of the shoulder is selected to be 1 mm. Therefore, the overall thickness
of the plates is 9 mm.

The bearing has an ABEC Rating of Grade 1, meaning it has looser tolerances. [2]
The tolerance stated by McMaster-Carr for a 6001-2RS bearing is -0.009 mm to 0
mm. The hole size for installing the bearing is recommended to be a loose fit for the
outer ring, according to SKF [3]. A J7 Housing fit is recommended according to
ntnamerica.org [4], based on the following figure:



Housing
fits

Static inner
ring load

High demands on running accuracy
with light load

Where the static inner ring load condition applies. The same source also lists a table
of the recommended tolerances and based on this grade:

Table 7

Nominal bore
diameter of
bearing

(mm)
over incl.| high et

oT~10L
11T~11L

Unit ym

Where the nominal bore diameter of the selected bearing is 28 mm. This is in the
provide 18-30 mm range in the above table, which suggests that the housing rating be
9T ~ 21L, where T denotes “Tight”, L denotes “Loose”, and the provided numbers are
in units of um. Therefore, the hole size should be 28 mm with a tolerance of 9 um
tight to 21 pum loose.




The dimensions for the through-hole of the shoulder can be found by citing
resource.dynaroll.com, where they state the following: When a bearing is located
against a shoulder in a mating part, care must be taken that the rim of the shoulder
clears the opposing ring. This is achieved when the diameter of the shoulder has
clearance over the opposing race land diameter.

Maximum shaft shoulder diameter = Outer ring land diameter — Clearance*
Minimum housing diameter = Inner ring land diameter + Clearance*
*Clearance should be > 0.010 inch (0.25 mm) to allow for normal tolerances." [5]
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Figure 3 — Dimensions of 6001-2RS1 bearing

The above figure from hightempbearings.com portrays the outer ring, inner diameter
(land diameter) to be 25.5 mm. According to the maximum shaft shoulder diameter
equation, with a clearance (tolerance) of 0.25 mm, the through hole shoulder is
between 25.75 mm and 26 mm. Figure 4 provided below also supports these findings

[6].



Abutment dimensions

d : ; ;
fa a min. 0.851 in Diameter of shaft abutment
' @ d

= 7 a max. 0.591 in Diameter of shaft abutment

Da max. 1.024 in Diameter of housing abutment

o ‘ T2 max. 0.012 in Radius of shaft or housing fillet
= !

Figure 4 — Abutment dimensions

Additionally, housing radius should be less than bearing radius, or r > 1, where our
bearing radius r = 0.3 mm. Therefore, we can justify a bearing radius for our housing
1, tobe 1, = 0.15 mm. [5]

Gear Design Calculations (4 points)
1. Determine the forces on the gear teeth (radial, tangential, and, if applicable, axial).

The following equations can be computed by using the gear ratios and torques
mentioned in section 1, describing the gear kinematics and torques.

The tangential force acting on the gear teeth can be calculated as follows (Shigley
equation 13-12b):
_ Tmotor

Wt,motor ~ T dp1
2

where the torque acting on the motor can be calculated as the following, since the
blade and shaft gear spin on the same shaft, meaning they possess the same angular
velocity and therefore the same torque:

Tshaft = Thiage = 1548 N*mm
Tinotor = —Tshase * gear ratio = —1548 * 1.3 = —2063 N*mm

Therefore,
2063 N*xmm
Wt,motor = T80 =51.6 N
— mm

2

The radial force on the gear teeth can be calculated as follows (Shigley equation 13-
40):

Wy motor = Wi tan ¢, where ¢ = 20° pressure angle.

Wy motor = 51.6 % tan 20° = 18.7 N



It should be noted that the tangential and radial forces act equally and opposite on
both gears. Therefore, both gears should experience the same load.

The pitch line velocity for the motor gear is calculated as follows, where w.,p¢0r =
481.7 rad/s, dividing by 1000 yields the answer in m/s, necessary to calculate K,:

dp1
—, *Wmotor

V. =
1 1000

= 14.45 m/s

The dynamic stress concentration factor K, is given by the following for hobbed
gears (Shigley 14-6¢):

_ 3.56+VV

K.
v 3.56

= 2.068

The strength of the selected steel gears in bending and contact are provided in the
problem statement and are listed as follows:

o S, =210MPa
o S.=760MPa

The face width for both gears sourced from McMasterCarr are listed as being 20 mm.
F =20 mm

The respective Lewis Form Factors for both gears using table 14-2 in Shigley shows that
the motor gear has a Y = 0.3892 and the shaft gear has a Y = 0.359. Because the shaft
gear has a smaller Y, it experiences more stress and must therefore be used as the gear for
which all stress calculations are constrained.

The metric Lewis Bending Stress equation (Shigley 14-8) can be used to obtain
approximate bending stresses on the gear:

_ KWt

b = = 8.3 MPa
FmY

0p K 210 MPa, which suggests most stress is not from bending.

The Hertzian Stress (Surface Compressive Stress) can be found using equations 14-11
and 14-12 from Shigley:

c, | KW (] + ]) - 14-14
T = — _— | —+— (1414
‘ PlFcosg \rp 1y



3 dp sin ¢

dg; sin g
rn= rn=—0

2 : 2

(14-12)
Where 1y = 13.68 and r, = 10.26, for the respective pitch diameters of the motor
and shaft gear.
And C), can be found using figure 3:
C, = 191, since our gears are steel.
The Hertzian Stress is therefore equal to:
oc = 188 MPa

Though this stress is significantly higher than the bending stress, it falls well below
the S, = 760 MPa.

To begin the AGMA Gear Stress Analysis, let’s first obtain the stress factors and
constants needed for both bending and contact:

e Note: All of the following figures from this point are taken from Shigley.

Table of Overload Factors, K,

Driven Machine

Power source  Uniform Moderate shock  Heavy shock

Uniform 1.00 1.25 1.75
Light shock 1.25 1.50 2.00
Medium shock 1.50 1.75 2.25

K, = 1.25 — Reasoning:

Uniform Power Source: If the motor provides a consistent and steady level
of power without significant fluctuations, then it would be classified as a
uniform power source.

Moderate Shock Driven Machine: A chop saw blade undergoes moderate
shock loads because it intermittently cuts through material. The resistance
provided by the material being cut can cause sudden and moderate loads
on the gear system, especially when encountering knots in wood or
unexpected materials in the workpiece.

i 1 f‘\aT 003535
K. =—=1192
5= (5)

i

K, = 1.4045

Ky (Kp) = Cp = 1+ Cone(Cpp Com + CinaCe) = 1.2862:



C..= {14-31)

1 for uncrowned teeth
0.8 for crowned teeth

Cme = 1 —The provided schematics and diagrams of the gears listed on
McMaster-Carr suggest that the gears are uncrowned.

.
— 0025 F<li
[lwp =
! F _ . . : .
=1 —— — 0.0375 +0.0125F 1< F<1Tin  (14-32)
104y
F ;
—0.1109 +0.0207F — 0000 228F> 17 < F<40in
104y

Note that for values of F/(10dp) < 0,05, F/{10d,) = 003 is used.

Cpr = 0.0250 - Since F < 1 in (25.4 mm), the first equation is used.
Since the value obtained was less than 0.05, 0.05 is used.

c = 1 for straddle-mounted pinion with §,/§ < 0.175 -
L B for straddle-mounted pinion with §;/8§ = 0.175 e
Cpm = 1.1 — We must assume the worst case, since the shaft gear follows

a cantilever model, not a straddle-mounted one.
Coa=A + BF + CF* (see Table 14-9 for values of A, B, and ) (14-324)

Table 14-9 Empirical Constants A, B, and C for Equation (14-34),
Face Width F in Inches®

Condition A B [

Open gearing 0.247 00167 —0765(107%)
Commercial, enclosed units 0.127 00158 —0.930( 10~
Precision, enclosed units 0.0675 00128 —D.926(10—%)
Extraprecision enclosed gear units 0.00360 00102 —0.822(107%)

*Soe ANSIAGMA 2101-Di4, pp. 20-22, for SI formulation.
Semirce: ANSIAGMA 2001- DiM.

Cina = 0.2587 - Since the design requires open gearing, the first-row
values are used

is improved by lapping, or both (14—35)

{ 0.8 for gearing adjusted at assembly. or compatibility
C.=

1 for all other conditions
C., = 1 — We assume the gear is not adjusted at assembly and their

material properties remain the same throughout operation and during
installation.
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Y; = 0.37 — The gear for which we are trying to determine Y; (shaft gear) has 30

teeth. The driving gear has 40 teeth. We follow the 35 teeth curve to obtain the

0.37 value.

This factor, the rim-thickness factor Ky, adjusts the estimated bending stress for the
thin-rimmed gear. It is a function of the backup ratio mg.

ir .
Mg = ? (14-29)
T

where 1 = rim thickness below the tooth, and h, = the tooth height. The geometry
is depicted in Figure 14-16. The rim-thickness factor Kj is given by

2242

-
1610 = my < 1.2

K= (1440
=10 mg = 12 (14-20)

K = 1 — The rim thickness is much less than the height of the tooth, so we

assume that mp is equal to 1.
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We now possess the necessary factors to compute g, AGMA Bending Stress in the
above figure:

Using the above equation, g, = 16.4 MPa.

To compute the factor of safety, recall that L = 5.52e9. We now call this N. With
this, we refer to the following figure:

Stress-cycle factor, ¥,

30 NOTE: The choice of ¥}, in the shaded
4.0 Y. = 04518 Ny-0148 area is influenced by:

400 HB N

2 Pitchline velocity
_ —0.1192

3.0 Case E‘E‘ Yy=6.1514N Gear material cleanliness

250 HB Y. = 4.9404 01045 Residual stress
o Nitrided N Material ductility and fracture toughness

. [F— i —— Q17
Bl [ —Yy=3517 N
Y, = 13558 N 00178
1.0 —2/ 1.0
0.9 0.9
0.8 ! 0.8
07 Y, = 1.6831 N 0035 07
0.6 0.6
0.5 - 0.5
10° 103 10* 10° 108 107 10% 10° 10'°

Number of load cycles, N

We note that equation 1.3558N ~%-0178 5 ysed, since it was mentioned in
lecture, per the AGMA standard, that the upper portion is for general
applications.

Yy = 0.9095
K; = 1 — Section 14-15 states that for temperatures up to 250 degrees F,
use 1.
Bending
factor of 5 =Sr Y/ (KyK)
safety : &
Eq. (14-41)

Plugging in the above values reveals S to be:



Sg = 11.65, where the specified minimum safety factor for the gears
is 2. It passes the requirement.

N A !

6.=C, (WEE’TE_EFI
P

To calculate the AGMA contact stress in the above equation, a few additional
factors must be found:

Ng dg a7
i = — = — 14_237
TN 4 e

meg = % =0.75
my = 1 — Shigley states on page 758 that this value is 1 for spur gears.
Cy = 1 —This value is 1 since both gears are the same hardness and

manufactured from the same material.

cos ¢, sin ¢, mig
?—¢— external gears
Lty my+ 1 ~
I= . (14-23)
cos ¢, sin gh, g .
—_— internal gears
LEtiy Mg — I

I = 0.0689 — Based on the above obtained values.
Contact stress can now be computed as follows:

o, = 327.26 MPa



The factor of safety Sy is obtained by calculating Zy (above figure) and using
pre-calculated values:

5.0
NOTE: The choice of Zy in the shaded
40 zone is influenced by:
30 Lubrication regime
- Failure criteria
= Smoothness of operation required
: Pitchline velocity
; 2.0 Gear material cleanliness
& Zy= 2,466 N 0056 Mat_enal ductility and fracture toughness
- : Residual stress
; Zy= 14488 N~0013
8 1 et LU L
¥l / =
0.9
0.8 Nitrided -
. - = 2] i r—UA
07 Zy=1249N
0.6
0.5 - - - _
10° 10? 10 107 10° 107 108 10° 1ot
Number of load cycles, N
Z = 0.8649
Gear only
Wear I
factor of 5, — e ZnCn/KrKp
safety H o,
Eq. (14-42)

Using the above equation:
Sy = 2.0072

2. Ifwe had a supplier that could provide any face width we wanted at no additional cost,
what minimum face width would be necessary for the gears to meet the required factor of
safety? Justify your design with complete calculations. No credit will be given without
sufficient supporting calculations. Your selected gears must have at least this face width.

Since the gears experience more stress in contact, we will adjust the iteration
according to Sy, not Sg.

Additionally, it should be noted that K and K} are the only factors that scale with
the face width F. While K scales strictly according to some concrete value of F,
care should be taken when proceeding with K, since the face width’s value
depends on the equation to use when calculating C, . However, we can safely
assume that the face width will be no greater than 1 inch since our factor of safety
is very roughly 2. Therefore, we can assume that the following equation is always
used:

— 0,025 Feli
104, =



i
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Using our contact stress equation above, we can use MATLAB to iteratively solve
for an F that causes Sy to assume the value of 2.

The procedure to obtain the minimum face width with MATLAB is as follows:

1. Pick a face width.
ii. Calculate Sy
iii. If Sy > 2.0, decreases the face width. If S;, < 2.0, increase the face width.

iv. Repeat until Sy = 2.0

A value of 19.9 mm is found to represent the minimum face width value for the

design.
3. Ifwe wanted to try out a new supplier, what minimum Brinell hardness would you specify

for these gears (and why)?

The S; and S, for the steel gears are provided at 99.9% reliability. However, to
proceed with the following calculations, they must be readjusted to reflect their
99% reliability, where:

Table 14-10 Reliability Factors Ky (¥z)

Rellability K. (V)
0.9999 150
0.000 125
0.99 100
0.90 0.85
0.50 070

Semiree: ANSIAGMA 2000- DM,

Therefore, using the following equations, we can obtain more a standard S; and
Se¢:

“’u=fh K
F hr L
]
o _5"}:"{.--"%."'E
_'"]_-"—"r.' Hr H.-r
Lk

Therefore, S; = 262.5 MPa and S, = 950 MPa.



Now, we must take these values and solve for an Hp for both using the following

figures:

Figure 14-2

Gear bending strength for
through-hardened steels, §,.

The SI equations are:

§ =0.533H; + 88.3 MPa,
grade 1, and §, = 0.703H; +
113 MPa, grade 2.

(Source: ANSKAGMA 2000-1004

and 2107-DO4.)

Metallurgical and quality
control procedune required

50 Grade 2
E_ 5,= 102 Hg + 16400 psi
e
£ 40
=4
5
=
B
= 30
= Grade |
= 8§ =TI3H,+ 11300 psi
o
o

0

3!

30 200 250 300 350 400 450
Brinell hardness, Hy
Figure 14-5

1000 Tk i

]
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I

175

Giear contact sength, 5

Metallurgical and quality control procedures required

Grade 2
5 =349 H, + 34 300 psi

Grade |
5= 322 H, + 29 100psi

Gear contact strength S, at

107 cycles and 0.99 reliability
for through-hardened steel gears.
The Sl equations are:

5. = 222Hg + 200 MPa,

grade 1. and

5. = 241Hg + 237 MPa,

grade 2.

(Source: ANSFAGMA 2007 -D04
ard ZT0T-IN. )

200 50 300

Brinell hardness, H g

350

450

We will use grade 1 steel since we don’t know and shall assume worst case.

St
Se

0.533Hp + 88.3 — 262.5 = 0.533Hp + 88.3 —» Hy = 326 MPa
2.22Hp + 200 - Hp = 337 MPa, selected since it’s larger than 326 MPa.
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Figure 2: Geared Design Dimensions

Figure 1 — Geared Design Dimensions



Table 11-1 Equivalent Radial Load Factors for Ball Bearings

F,/Cq e Xy Y, X; Y,

0.014* 0.19 1.00 0 0.56 2.30
0.021 0.21 1.00 0 0.56 2.15
0.028 0.22 1.00 0 0.56 1.99
0.042 0.24 1.00 0 0.56 1.85
0.056 0.26 1.00 0 0.56 1.71
0.070 0.27 1.00 0 0.56 1.63
0.084 0.28 1.00 0 0.56 1.55
0.110 0.30 1.00 0 0.56 1.45
0.17 0.34 1.00 0 0.56 1.31
0.28 0.38 1.00 0 0.56 1.15
0.42 0.42 1.00 0 0.56 1.04
0.56 0.44 1.00 0 0.56 1.00

*Use 0.014 if F,/Cy < 0.014.

Figure 2 — Equivalent Radial Load Factors for Ball Bearings
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Figure 3 — Elastic Coefficient (Cp)



